Fundamentals of Aerosol Transport & Practical Layered Risk Reduction for Indoor Environments

National Tribal Air Association: An Overview of COVID in the Workplace for Tribes: Re-Opening Tribal Buildings September 2020

Fundamentals

- Sources of emissions
- Exposure pathways
- General fate

Deposited inhalation dose

Layered Risk Reduction Strategy

Sources of Emissions

- Breathing
- Speaking
- Singing
- Coughing
- Flushing?
- Resuspending?

- Virus not naked (embedded in particles)
- Particles = combo of mucous & saliva
- Particle sizes vary widely (< 0.3 µm to 200 µm)
- Small fraction of viruses infectious

Coughing

Lindsley, W.J., et al., J of Occupational and Environmental Hygiene, 9: 443–449 (2012)

- Mean = 75,400 SD = 97,300 / cough
 - Range: 900 302,000 / cough

Speaking

Asadi, S. et al. Scientific Reports, 9:2348 (2019) doi.org/10.1038/s41598-019-38808-z

- Reasonable range = 300 to 3,000/min (some super-emitters to 12K/min)
- Super-emitter: 6 min of speaking loudly ≈ mean emission of single cough
- Breathing ≈ order of magnitude lower than average speaking

Exposure Pathways & General Fate

Inactivation Rates of SARS-CoV-2

• $t_{1/2} = 1.1 \text{ hr} \longrightarrow decay rate = 0.63/\text{hr}$

- "ballpark" of ACH for residential buildings
- · lower than many non-residential buildings

Deposited Inhalation Dose

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

C_i = concentration of particles of size i

- emissions; mask; deposition; ventilation; control
- time infector is in space
- B = Respiratory minute volume
 - activity (can vary significantly)
- t = Time in space with an infector
- **f**_{dep,i} = **Deposition of particles** of size i in resp
 - particle size; breathing mode; activity

Deposition In Respiratory System

FIGURE 11.3 Predicted total and regional deposition for light exercise (nose breathing) based on ICRP deposition model. Average data for males and females.

W.C. Hinds, Aerosol Technology, 2nd Ed. 1999, John Wiley & Sons

Layered Risk Reduction (LRR) Strategy

Reduce source

Reduce Source / Require Masks

"If there is a pile of manure in a space, do not try to remove the odor by ventilation. Remove the pile of manure." - **Max von Pettenkofer** (1858)

- Test & isolate
- De-densify (less occupants)
- Require masks for all
- Reduce speaking to extent possible
- Ban certain activities (singing, aerobics)
- Replace flooring?

GRAPHIC: V. ALTOUNIAN/SCIENCE

Distance from Source (others)

At air speed of 5 cm/s in free stream

d _a (μm)	V _{TS} (m/s)	k _d (1/hr)	X _{1.5m} (m) -GS	X _{50%} (m) - PF
0.5	7.5E-06	0.05	10000	2500
1	3.0E-05	0.1	2500	1200
5	7.5E-04	1.5	100	80
10	3.0E-03	7	25	20
50	7.5E-02	100	1	1

Particles \leq 10 µm not substantially removed w/in 6 ft Even 50 to 100 µm particles can travel > 6 ft (warm jet) DISTANCE TRAVELED BY GERM DETERMINED

At Harvard University an experiment was carried on to determine s the exact distance a germ may be thrown from a human mouth.

A room was thoroughly disinfected. all ornaments were removed and nothing but a fifteen foot table remained on which was placed bowls of culture media, one foot apart. A man breathed through his nose over the bowls. They were then put in a culture oven and heated but no germs were present. Next he washed his throat with a germ laden liquid, and stood at the end of the table and talked in an ordinary tone. The bowls were infected for a distance of four feet. Next he spoke in a loud tone, such as used by a lecturer. The bowls were infected for 10 feet. When he sneezed or coughed, they were infected for 12 feet. Moral; wear your mask

Engineering Controls

- Increase outdoor air supply (correctly)
- Centralized or room-specific filtration
- Portable air cleaner
- UVGI: Inactivate (destroy) virus
- Others? (generally not rigorously tested)

http://www.sheffield-pottery.com/

Portable Air Cleaners

- HEPA-based portable air cleaner
- HEPA = High Efficiency Particulate Air
- Key attribute = Clean Air Delivery Rate (CADR)
- CADR = $\eta \times Q$
 - η = single pass removal fraction (-)
 - Q = volumetric flowrate (ft³/min)
- Example: $\eta = 0.5$; Q = 500 ft³/min; CADR = 250 ft³/min

EPA.gov

Portable Air Cleaners

- Equivalent air changes per hour = EqACH = CADR/V (V = volume of indoor space)
- Example: V = 600 ft² x 8 ft = 4,800 ft³
- CADR = 300 ft³/min
- EqACH = 300 ft³/min/4,800 ft3 = 0.0625/min (or x 60 = 3.8/hr)

$$C_{i} = \frac{E_{i}/\lambda + E_{i}Q_{i}}{1 + R_{a}E_{i}/\lambda + 2iQ_{i}/\lambda + 2$$

If $\lambda = 0.5/hr \ 3.8/0.5 = 7.6$ 1 + 7.6 = 8.6 89% reduction

DIY - Portable Air Cleaners

- Box fan sucking through filter
- Multiple filters in parallel (benefits)
- Cost = \$30 to \$60 (+ filter replacement)
- Some reports of good performance

Example: Portable Air Cleaners

Example of filter/fan performance

Black carbon during wildfire smoke event, house #4, windows and doors closed

Summary

Reduce source	•	F
Require masks indoors		-
	•	k
Distance from source		
Reduce time indoors	•	S
Ventilate	•	C
Filter / Inactivate	•	C
Clean	•	I
Educate		L

- Four major transmission pathways
- Known sources of SARS-CoV-2 (high variability)
- SARS-CoV-2 conveyed via aerosols (important)
- Can travel long distances from infector (source)
- Deposited inhaled dose critical: $D = C \times B \times t \times f$
- Layered Risk Reduction Strategy
 - Potential for significant benefit

Extra Slides for Discussion

Resuspension of Particles?

Ren, J. et al. Building & Environment (accepted)

Influence of Flooring

Ren, J. et al. Building & Environment (accepted)

Should carpet be removed before reopening?

Easier to clean/disinfect impermeable flooring.

Masks

Masks protect others*

- Reduction in large droplets
- Reduced initial jet distance
- Masks protect you*
 - Large droplet "projectiles"
 - Small amt of aerosols
- Want low degree of penetration
 - Fibrous
 - Random fiber orientation
 - Thicker = better
 - Must be breathable
- Want low leakage
 - Minimize "least resistance"
 - Often around crease of nose
 - Separate nose & mouth?

Masks reduce airborne transmission

Infectious aerosol particles can be released during breathing and speaking by asymptomatic infected individuals. No masking maximizes exposure, whereas universal masking results in the least exposure.

Putting It All Together

Particle deposition in resp system

- Nose breathers
- Dominated by head region (25% ALV)
- Fate mechs impact volume deposited

Simulation for university lecture

- 0.5 to 4 µm particles from infector
- Fate: exhaust to outdoors dominates
- Fate: Surface dep up as vent down
- Fate: HEPA-PAC signif

ASHRAE = ASHRAE 62.1 2019

Particle Deposition Mechanisms

Gravitational settling important + Star + far, i to Kdep, i Other deposition mechanisms 100 Thornburg et al. 2001 (A/V=0.333 /m) × Offermann et al. 1985 Thatcher & Layton 1995 (λ=0.30 /h) > Thornburg et al. 2001 (A/V=1.750 /m) Moslev et al. 2001 Thatcher & Layton 1995 (λ=0.18 /h) Particles Impaction Streamlines Thatcher & Layton 1995 (λ=0.14 /h) + Thatcher et al. 2002 △ Long et al. 2001 Modified from Wang, W., *et al. Aerosol* Sci & Technol, 46:843–851, 2012 Deposition Rate λ_d (1/h) 10 Hussein et al. 2005b Abt et al. 2000 ▲ Hussein et al. 2006 object Diffusion ai & Nazaroff 2000 0.1 u* = 0.01 m/s, A/V=3.0/m = 0.10 m/s, A/V=3.0/m u* = 1.00 m/s, A/V=3.0/m 0.01 **Direct Interception** 0.001 0.01 0.1 10 1 Humans Particle Diameter (um) **Furnishings** Hussein, T.; Kulmala, M., Water Air Soil Pollut. 8:23-34 (2008) Fan blades Fiber in a filter k_{dep} for 0.5 to 10 µm particles \approx 0.1 to 7 h⁻¹ More "clutter" = more op for removal Context: $\lambda \approx (0.3 \text{ to } 4 \text{ h}^{-1})^* - \text{fn}(\text{type of building})$ More mixing = more op for removal

Electrostatic & thermophoretic effects

¢

100

EID Applied to Restaurant X

- 89 patrons / 1 infector / 10 infected
- Significant metadata
- 138 m² / 431 m³ ACH = 0.6-0.8 h⁻¹ (0.75-1.04 L/s-p)
- Video; tracers (researchers/manikins); CFD

Li, Y. et al., doi.org/10.1101/2020.04.16.20067728doi medRxiv preprint

- Use metadata from restaurant + tracer studies
- Index case: Assumptions related to emissions (cough, speak, breathe)
- Particle size distributions (0.5 to 4 μ m) can do more

Comparative Analysis – Restaurant X

- EID: Deposited inhaled volume in ABC patrons
 - $1 10 \text{ pL} (10^{-12} \text{ L}) / \text{patron for 75 min event}$
- Range depends on assumed emissions / mixing

Screening Approach (scenario comparisons)*

- Take index case (Index X) for Restaurant X (similar emissions)
- Place in different environments & determine Ω

 $\Omega = (Volume_{dep}) / (Volume_{dep}, Restaurant X)$

Busy Restaurant

100 m² x 3.14 m; 69 patrons + Index X; 75 minute event ASHRAE 62.1 yields 4.1 h⁻¹

- Masks
- Distancing
- Very well ventilated
- Outdoors
- Reduced time
- Take out
- Delivery

Choir Practice

- 50 participants (+ Index X) in 100 m² x 2.8 m for 75 min
- 50% time singing (elevated speaking); Heavier breathing (emit & inhale)*
- ASHRAE 62.1 2019 yields 3.6 h⁻¹

Additional considerations: close contact & fomites

* Based on literature, e.g., Salomoni et al., PloS One, 2016; 11(5): e0155084

Gym w/ Aerobic Activity

- 40 patrons; Staff member = Index X; Heavy breathing receptor (aerobics)
- 100 m² x 4 m; ASHRAE 62.1 2019: yields 3.9 h⁻¹

- Avoid indoor gyms (perhaps signif' cross-flow)
- Outdoor workout
- Masks
- Physical distancing

Ride Share

1 Patron + Index X as driver; 3 m³ cab; 20 mph; 20 minutes across town

Air exchange rates reasonable based on a number of peer-reviewed papers

- Wear mask
- Insist driver wears mask
- Crack open windows
- Avoid long trips / busy commutes
- Can get Ω ≈ 0.1

Elevator

Index X + 1; 1 min travel w/o door opening; Air changes = 60 h^{-1} (1 min⁻¹)

School Classroom

- 700 ft²; 25 students for 75 min
- Infector = teacher
 - Occasional cough (Index X)
 - Speaks 50% of time
 - Lower amp than Index X
- Infector = student
 - No cough (10% speak)
- Masks decrease Ω

General Fate & Pathways

ηQ_f $\frac{dC_i}{dt} = \frac{E_i}{\forall} - B_iC_i$ Bi = 2 + Rdep + 2 PiQi + 2 Fairi Qb Ε $f_{dep}Q_{b}$ ηQ_p k_{dep} k_{dep}

Particle Deposition by Settling

Gravitational settling

d _p (μm)	t (1.5 m)	x (m)
0.5	56 hr	10000
1	14 hr	2500
5	33 min	100
10	8 min	25
20	2 min	6
50	20 sec	1

$$V_{TS} = \frac{\rho_p d_e^2 g C_c}{18\eta X} = \frac{\rho_o d_a^2 g C_c}{18\eta}$$

Based on 5 cm/s air speed in free stream Particles \ge 50 µm can travel further than 1 m Other mechs important as d_p becomes small

