Simulation of Controls for Reducing Aerosol Exposure in Educational Spaces using FaTIMA

Lisa Ng*, Dustin Poppendieck, Brian Polidoro, W. Stuart Dols, Steven Emmerich and Andrew Persily

9/17/2020 NTAA Webinar

engineering

Outline

- FaTIMA (Fate and Transport of Indoor Microbiological Aerosols)
- Study objective
- Educational spaces simulated
- Simulation parameters
- Results
- Summary

Fatima

• FaTIMA: Fate and Transport of Indoor Microbiological Aerosols [Ref 1]

https://www.nist.gov/services-resources/software/fatima

https://pages.nist.gov/CONTAM-apps/webapps/FaTIMA/

- Free online tool for evaluating aerosol exposure
 - Single-zone with uniform aerosol concentration
 - 24 h simulation

Inputs

- Room dimensions
- Infiltration rate
- HVAC airflow rates
- Portable air cleaner specs
- Aerosol characteristics
- Deactivation rate
- Sources
- Surface deposition rates
- Occupied time

Outputs

Qex

- Airborne aerosol concentration
- Surface loading
- Aerosols on filter
- Occupant exposure
- Numerical and graphical

FaTIMA web interface

NIST MULTIZONE MODELING

See TN 2095 - A Tool to Model the Fate and Transport of Indoor Microbiological Aerosols (FaTIMA) for documentation of this tool.

Instructions: Set Inputs then click the RUN SIMULATION button.

Inputs

Zone Geometry	Volume [191] m ^a V	Floor Area 74 m ² V	Wall Area 89 m²	Ceiling Area 74 m²	Other Surface Area	Surface to Volume Ratio
Infiltration	Infitration 0.3 1 / h	Particle Penetration Coefficient				
Ventilation System	Supply Airflow Rate	Outdoor Air Intake Fraction 0.3	Return Airflow Rate 371 sL/s	Local Exhaust Airflow Rate 0 sL/s		
System Filters	Outdoor Air Filter	Recirculation Air Filter				
Calculated Airflows	Total Outdoor Air Change Rate	Outdoor Air Intake Rate	Recirculation Airflow Rate			
Room Air Cleaner	Maximum Airflow Rate 94.39 sL/s V	Fan Flow Fraction	Filter Efficiency	CADR 0 sL/s		
Particle Properties	Name IV1	Diameter 1 µm 💙 🚺	Density 1 g/cm°	Particle Deactivation	Half-life	Decay Rate
Continuous Source	Source	Generation Rate	Generation Time Period Start 09:00 / End 15:00			
Durat Course	Source	Burst Type	Amount per Burst	Generation Time Period	Burst Interval	

FaTIMA results

RUN SIMULATION	Simulation Complete.	Project File	Download CONTAM Project	Report	Download CSV Report	Go back to Inputs		

Results

Sources	Continuous 180000 #	Burst 0 #	Outdoor 0 #	Total 180000 # •	
Airborne Concentration	Average (6 h) 34.439 #/m³	Average (24 h) 8.9546 #/m³	Maximum (24 h) 35.825		
Airborne Exposure	Average (6 h) 34.45 #/m³	Maximum (6 h) 35.825 #/m³	Integrated Exposure 744130 # s/m ³)	
Surface Loading	Floor 26.31 #/m²	Walls 0.26156 #/m²	Ceiling 0 #/m²	Other 0 #/m²	Total 26.572
Deposited	Floor 1946.1 #	Walls 23.281 #	Ceiling 0 #	Other 0 #	Total 1969.4 #
Filtered	Outdoor Air	Recirculation 69844 #	Air Cleaner	Envelope 0 #	Total 69844 #
Other	Deactivated	Exited Zone	Remain Airborne 7.1272e-14 #		

Study Objective

To evaluate the relative reduction in aerosol exposure in education spaces as a result of changes to the operation of heating, cooling and ventilation (HVAC) systems and inclusion of non-HVAC controls (e.g., wearing of face coverings) using FaTIMA

Disclaimers

- This study characterizes the relative reduction in aerosol exposure (of individuals with face coverings) due to controls studied
- This study provides data that can help decision makers select changes to HVAC operation that may reduce aerosol exposure
- This study is for a single zone with uniform aerosol concentration and for single contagious occupant
- This study <u>does not</u> define a level of exposure that is safe or healthy
- Controls presented should be part of a larger risk reduction strategy

Educational spaces simulated

Required outdoor air (OA)

ASHRAE 62.1-2019	L/s.person	L/s⋅m²	cfm/person	cfm/ft ²	Default occupancy (#/100 m ² or #/1000 ft ²)
Classroom (ages 5-8)	5	0.6	10	0.12	25
Classroom (ages 9+)	5	0.6	10	0.12	35
		r			

<u>Note:</u> Total OA required = per.person rate x #ppl + per.area rate x Area

Supply rates^[Ref 2]

	L/s⋅m²	cfm/ft ²
Classroom (ages 5-8)	5.60	1.12
Classroom (ages 9+)	7.05	1.41

Space information

Size	Dimensions (m)	Dimensions (ft)	Occupancy	Assumption/Source
Classroom (ages 5-8)	8.6 x 8.6 x 2.6	28 x 28 x 8.5	18	California Specification 01350 [Ref 3]
Classroom (ages 9+)	12.2 x 7.3 x 2.6	40 x 24 x 8.5	31	Portable classroom [Ref 4]

Simulation parameters

Portable classroom (9+)

Space Type

(occupant ages)

Classroom (5-8)

Air change rate (h⁻¹)

(supply)

7.8

9.8

- Aerosol size: 1 µm
 - No virus inactivation
 - Deposition velocities
- Continuous source
 - Contagious person emitting 500 particles/min
- Integrated exposure evaluated between <u>9 am to 3 pm</u>
- Controls simulated
 - Face coverings filter efficiency at 1 µm: 30 % [Ref 5]
 - Portable air cleaners between 1 h⁻¹ and 6 h⁻¹
- All results will be normalized

Floors

3.40E-03

FACE

Deposition velocity (cm/s) [Ref 1]

Walls

3.38E-05

1.13E-03

PORTABLE AIR

(PAC)

Ceiling

0

1.75E-04

FILTER/ EXHAUST FAN MERV RATING

Simulation of PACs

- CADR ^[Ref 6]: clean air delivery rate = airflow (cfm) x efficiency of particle removal of 3 test particles (i.e., smoke 0.09 μm -1.0 μm, dust 0.5 μm -3 μm and 5 μm -11 μm pollen) per ANSI/AHAM Standard AC-1
- Convert CADR to h⁻¹
- PACs: typically 50 CADR to 400 CADR
- Simulation assumptions
 - Filter efficiency 0.99 (HEPA filter)
 - Operated at highest speed setting

Space Type	Area, m ²	Equiv	alent a	ir chan	ges (h ⁻¹)	achieve	ed with C	ADR listed
(occupant ages)	(ft²)	150	250	300	350	400	2x400	3x400
Classroom (5-8)	74 (793)	1.3	2.2	2.7	3.1	3.6	7.1	10.7
Portable classroom (9+)	89 (960)	1.1	1.8	2.2	2.6	2.9	5.9	8.8

Note: classrooms ceiling height = 2.6 m (8.5 ft)

National Institute of Standards and Technology U.S. Department of Commerce

Simulated HVAC system types – classroom (5-8) values

Sensitivity analysis

		Base assumption	Uncertainty
B	Face coverings	30 % filtration efficiency	20 % less effective for fit
Y	Infiltration	0.30 h ⁻¹	0.1 h ⁻¹ and 1.0 h ⁻¹
	OA (HVAC-TU)	62.1-2019 rate	20 % less for performance issues
	Filter	MERV 13: 90 % filtration efficiency at 1 µm	10 % less for improper installation, age, etc.
Q	PACs	99 % effective at max setting	33 % capacity when operated at <max setting<="" th=""></max>
	Exhaust fan	100 % effective	10 % less for improper installation

With and without controls

- Integrated exposure normalized (NIE) to HVAC-CTL with:
 - One person contagious, no face coverings
- HVAC-WU systems have highest NIE and largest error bars

Avg 96 % reduction in NIE for HVAC-WU systems

NIE ventilating at half of OA requirement

- Integrated exposure normalized (NIE) to HVAC-CTL with:
 - One person contagious, no face coverings

HVAC-CTL with controls

- Results similar in both classrooms and normalized to no controls
- Error bars account for uncertainty in effectiveness of filter, face coverings and/or PAC
- Face coverings, MERV-13 and PAC (300 CADR) reduce NIE to 0.5, 0.6 and 0.6, respectively
- Combined face coverings with controls have lower NIE compared with individual controls

HVAC-CTL: varying controls with face coverings

- Similar for both classrooms (5-8, 9+)
- 70 % reduction in NIE at MERV 13
 - Equivalent controls: 90 % OA or 3 h⁻¹ PACs
- PAC may be more effective than other controls (OA, filtration) as capacity increases beyond 1 h⁻¹
 - Assumes good fit of face coverings and PAC operated at max setting

HVAC-TU with controls

Results similar in both classrooms

- Error bars account for uncertainty in effectiveness of face coverings, filter, PAC and/or exhaust fan
 - Use of exhaust fan resulted in exposure similar to high infiltration rate
- Face coverings, MERV 13 and PAC (300 CADR) reduce NIE to 0.5, 0.5 and 0.6, respectively
- Combined face coverings with controls (except exhaust fan) have lower NIE compared with individual controls

HVAC-TU: varying controls with face coverings

- Similar for both classrooms (5-8, 9+)
- PAC reduced NIE by more than Exhaust Fan with same capacity
 - Exhaust fan (1 h⁻¹ to 3 h⁻¹) had similar NIE to no exhaust fan
- 75 % reduction in NIE at MERV 13
 - Equivalent controls: 4 h⁻¹ PACs (450 CADR in classroom (ages 5 to 8) or 500 CADR in classroom (ages 9+)

 \mathbf{O}

National Institute of

HVAC-WU with controls

- Similar for both classrooms (5-8, 9+)
- Error bars account for uncertainty in effectiveness of face coverings, PAC and/or exhaust fan
- PAC (300 CADR) alone reduced NIE to 0.2
- Combined face coverings with PAC had lower NIE compared with individual controls

HVAC-WU: varying controls with face coverings

- Similar for both classrooms (5-8, 9+)
- PAC and exhaust fan reduced NIE by similar amounts over range of capacities
- 80 % reduction in NIE with 150 CADR
 90 % reduction with 300 CADR
- Note: HVAC-WU system (no controls) started with 9x exposure of HVAC-DOAS (avg both classrooms)

Summary: comparing within each HVAC system

Average NIE across classrooms (5-8, 9+)			No	face coverir	ngs	With face coverings			
System	No controls	Face coverings alone	PAC (300 CADR)	MERV 13	Exhaust fan (1 h ⁻¹)	PAC (300 CADR)	MERV 13	Exhaust fan (1 h ⁻¹)	All combined
HVAC-DOAS	1.0	0.5	0.7	N/A	N/A	0.3	N/A	N/A	N/A
HVAC-Central	1.0	0.5	0.7	0.6	N/A	0.3	0.3	N/A	0.2
HVAC-Terminal Unit	1.0	0.5	0.6	0.5	1.0	0.3	0.3	0.5	0.2
HVAC-Window Unit	1.0	0.5	0.2	N/A	0.5	0.1	N/A	0.3	0.1

- Dark cells indicate controls with lowest NIEs
- Assumes controls are performing "perfectly"
- These values are <u>not</u> a direct metric of infection risk
- HVAC-WU system starts out with highest exposure (9x of HVAC-DOAS)

Conclusions

- Effect of controls varies depending on HVAC system type
- Effect of controls depends on how they are implemented
 - Fit of face coverings
 - Portable air cleaner setting
 - Filter fit, sealing or condition
- While the exposure presented here are not a direct metric of infection risk, FaTIMA can be used to identify and compare possible control strategies to reduce exposure

References

- 1. Dols, W. S., B. J. Polidoro, D. Poppendieck and S. J. Emmerich (2020). "A Tool to Model the Fate and Transport of Indoor Microbiological Aerosols (FaTIMA)." TN2095.
- 2. ASHRAE (2019). ANSI/ASHRAE Standard 62.1-2019: <u>Ventilation for Acceptable Indoor</u> <u>Air Quality</u>. Atlanta, ASHRAE.
- 3. CDPH (2017). <u>Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources using environmental chambers, version 1.2</u>. Sacramento, CA, California Department of Public Health. *California Specification 01350.*
- 4. Thomas-Rees, S., D. Parker and J. Sherwin (2009). "Lessons Learned in Portable Classrooms." ASHRAE Journal 51: 30-41.
- 5. Konda, A., A. Prakash, G. A. Moss, M. Schmoldt, G. D. Grant and S. Guha (2020). "Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks." ACS Nano 14(5): 6339-6347.
- 6. AHAM (2019). <u>ANSI/AHAM AC-1: Method for Measuring the Performance of Portable</u> <u>Household Electric Room Air Cleaners</u>. Washington, DC, Association of Home Appliance Manufacturers.
- 7. Haverinen-Shaughnessy, U., D. J. Moschandreas and R. J. Shaughnessy (2011). "Association between substandard classroom ventilation rates and students' academic achievement." Indoor Air **21**(2): 121-31.
- 8. Ng, L. (2020). "<u>Summary of Current HVAC Recommendations for Re-Opening</u> <u>Buildings</u>" presented at the Committee on Indoor Air Quality Meeting (CIAQ), June 25, 2020

