National Tribal Air Association IAQ Considerations to Assist Tribes in Re-opening Tribal Buildings During COVID: Winter is Coming

Combining Ventilation, Filtration, And Air Disinfection: A Systems Approach To Effective Airborne Risk Reduction

William P. Bahnfleth, PhD, PE, FASHRAE, FASME, FISIAQ

Professor of Architectural Engineering, Penn State Chair, ASHRAE Epidemic Task Force

ARCHITECTURAL ENGINEERING

2 The current definition of indoor air quality for most buildings is safety + acceptability, not infection prevention

 acceptable indoor air quality (IAQ): air in which there are no known contaminants at harmful concentrations, as determined by cognizant authorities, and with which a substantial majority (80% or more) of the people exposed do not express dissatisfaction.

11/24/2020

3 INFECTIOUS DISEASE TRANSMISSION MODES

- Airborne
 - Droplet
 - Aerosol
- Fomite intermediate surface
- Direct contact
- Vehicle borne (water, food, blood)
- Vector (insect, animal)
- ...HVAC mainly impacts aerosol transmission

bode-science-center.com

4 SOURCES OF INFECTIOUS AEROSOLS

- Humans breathing, talking, singing, coughing, sneezing
- Plumbing toilet flushing, splashing in sinks
- Medical procedures dentistry, endotracheal intubation, others

5 RESPIRATORY DROPLET CHARACTERISTICS

- Droplets contain proteins and salts, dry to 20-40% of initial size
- Pathogens are incorporated in particles
- Similar size distribution but varying output for different activities
- Half or more of infectious load is in particles < ~5 μm
- Small particles can stay airborne for long periods of time

Johnson, et al. 2011. Modality of human expired aerosol size distributions. Journal of Aerosol Science 42:839-851.

6 US CDC and WHO recognize possible indoor airborne transmission of covid-19

- COVID-19 most commonly spreads during close contact (cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html)
- COVID-19 spreads less commonly through contact with contaminated surfaces (cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html)
- Airborne transmission of SARS-CoV-2 can occur under special circumstances (cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html)
 - Enclosed spaces
 - Prolonged exposure to respiratory particles
 - Inadequate ventilation and air-handling

"Ventilation represents a very important aspect, a very important factor to prevent the virus from spreading indoors."

WHI Science in 5 https://www.youtube.com/watch?v=XJCIf7F4qtc

7 RISK MANAGEMENT: HVAC is one layer of an effective mitigation strategy

- Source elimination
 - Testing, contact tracing
- Substitution NA
- Engineering controls
 - HVAC interventions to control aerosols
- Administrative controls
 - Rules and procedures
- Personal protective equipment
 - N95 mask mainly protects wearer
 - Surgical/cloth masks protect others (mainly)

8 Quantifying airborne risk – the Wells-Riley model

$$P = 1 - \exp\left(-\frac{Iqpt}{Q}\right)$$

- Steady-state conditions
- Time-dependent risk
- Quanta determined from data

- P = probability of new infections
- I = number of infectors
- q = quanta (infectious dose) emission rate (1/hr)
- p = pulmonary ventilation rate per susceptible (m³/h)
- t = exposure time (hr)
- Q = flow rate of uncontaminated air (1/hr)

9 If quanta emission rate is known, risk can be estimated ...but not very accurately for COVID-19

Stephens. 2012. HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne diseases. Final report to NAFA.

Buonanno, et al. 2020. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environment International, 145

10 The purpose of engineering controls is to reduce airborne exposure

- Ventilation
- Air distribution
- Filtration
- Inactivation
 - Disinfection
 - Humidification and temperature control

II VENTILATION WITH OUTDOOR AIR

- Dilute/exhaust contaminants
- Effective, but energy intensive, even with energy recovery
- Minimum required (e.g., ASHRAE 62.1) is a good baseline – but not sufficient without other controls
- 7-10 L/s-pers \approx 15-20 cfm/pers

Figure 4. Associations between common cold infection rates and mean ventilation rate in winter in buildings constructed after year 1993. ¹ Proportion of occupants with ≥ 6 common colds in the previous 12 months.

Sun, et al. (2011) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217956/

12 FILTRATION

- High efficiency filters can remove respiratory aerosols efficiently
- For indoor sources, must have recirculate indoor air through filters
- Effective if clean air delivery rate (efficiency × flow rate) is high enough
- ASHRAE Standard 52.2 Minimum Efficiency Reporting Value (MERV) rating prevalent in US

Representative MERV rated filter performance

Kowalski, W.J. and Bahnfleth, W.P., 2002. MERV filter models for aerobiological applications. Air Media, Summer, I.

Respiratory droplets that carry infectious disease pathogens are not captured by minimum standard (MERV 6, 8) filters – MERV 13 recommended

	MERV 6	MERV 8	MERV 13
l (0.3-1μm)	N/A	N/A	≥ 50%
2 (I-3 µm)	N/A	≥ 20%	≥ 85%
3 (3-10 μm)	≥ 35%	≥ 70%	≥ 90%

Johnson, et al. 2011. Modality of human expired aerosol size distributions. Journal of Aerosol Science 42:839-851.

14 INACTIVATION - AIR CLEANERS

- Ultraviolet Germicidal Irradiation
- Alternative particulate filters
 - Electrostatic
 - Thermal
- Air cleaners that create reactive species
 - Photocatalytic Oxidation (PCO)
 - Dry Hydrogen Peroxide (DHP)
 - Bipolar Ionization (BPI)

- Key questions
 - Effective in this application?
 - Safe for use?
 - Direct exposure
 - Byproducts
 - Better than alternatives?

15 Germicidal ultraviolet light is a well-validated technology

- Ultraviolet light in UVC band
- 265 nm ideal, 254 nm produced by low pressure Hg vapor lamps is standard
- Disrupts microbial DNA/RNA, prevents reproduction
- Coronavirus susceptibility is good
- CDC approved for tuberculosis control as adjunct to filtration
- Upper room systems measured > 10 ACH equivalent clean air supply

I6 GERMICIDAL UV APPLICATIONS

Upper Air UVGI

Surface

UVGI

Airstream UVGI

17 INACTIVATION TEMPERATURE AND HUMIDITY

- Faster inactivation of SARS-CoV-2 at higher T and RH
- Limited ability to vary T in comfort zone
- 40-60% RH \rightarrow lower infection rates in some studies
- Good to do if feasible
- Difficult to humidify many existing buildings safely
- Significance for COVID-19 needs further investigation

Optimum relative humidity range for minimizing adverse health effects.

18 TEMPERATURE AND HUMIDITY CONTROL

- Humidity has a large impact on rate of inactivation
- Settling is affected by humidity, but not much
- If ventilation and filtration are at recommended levels, impact of RH on exposure is secondary
- Not clear effect of RH on susceptibility

Yang W, Marr LC (2011) Dynamics of Airborne Influenza A Viruses Indoors and Dependence on Humidity. PLoS ONE 6(6): e21481.

19 Comparing controls

Ventilation

- Limited by temperature and humidity control constraints
- Expensive
- Low first cost impact
- Filter upgrades
 - Limited by flow resistance effects
 - Possible increase in fan energy use
 - Variable first cost impact

- Inactivation Air cleaners
 - Wide range of cost and performance
 - Don't affect comfort
 - Moderate/low energy use and cost
 - Claims vs. evidence
- Inactivation Temperature and humidity
 - Clear evidence to change set points is lacking

All reduce airborne exposure – need an approach to application that is effective, efficient, economical

20 Equivalent clean air flow for other removal factors can be included in wells-riley

$$P = 1 - \exp\left[-\frac{ipqt}{Q}\right] = 1 - \exp\left[-\frac{ipqt}{4}/\alpha_{OA}\right]$$

Substitute outdoor air changes, α_{OA} [h⁻¹] for Q

Equivalent uncontaminated air flows rates can be estimated for filters, air cleaners, deposition, and natural inactivation of pathogens

Total equivalent uncontaminated air change rate: $\alpha_{\text{Total}} = \alpha_{\text{OA}} + \alpha_{\text{Filter}} + \alpha_{\text{Clean}} + \alpha_{\text{Depo}} + \alpha_{\text{Decay}}$

$$P = 1 - \exp\left[-\frac{ipqt}{4} / \alpha_{Total}\right]$$

21 Recommended equivalent clean air exchange rates

- Based on arbitrary relative risk threshold and occupancy
- Some suggest 3-4 eACH minimally acceptable, 5-6 eACH as excellent
- Comparable to healthcare requirements
 - Patient room minimum, requirements
 - Outdoor air: 2 ACH, total supply air: 4 ACH
 - Pre-filter: MERV 7, Final filter: MERV 14
 - Protective environment
 - Outdoor air: 2 ACH, total supply air: 12 ACH
 - Pre-filter: MERV 7, Final filter: HEPA I

•	▼ - 100% -												~
S	IMPLE TOOL FOR	SCHOOLS FOR SELECTING PORTABLE AIR CLEANE	R FOR ROOMS (input fields	are bright yellow)									
	A	В	С		D	E	F	G	н	1	J	К	L
SI	MPLE TOOL FOR	R SCHOOLS FOR SELECTING PORTABLE AIR (CLEANER FOR ROOMS (i	input fields are br	ight yellow)								
ST	EP 1 HOW BIG	IS THE ROOM?											
	Select unit	ts of preference	feet										
	How big is	your room?		500 Input your room size here in		n square feet							
	How tall a	re your ceilings?		8 Input your room size here in		n feet							
ST	EP 2 WHAT IS	THE 'CLEAN AIR DELIVERY RATE' OF THE AIR	PURIFER? (you get this f	from the manufac	turer)								
	What is the	e clean air delivery rate of the air cleaner?		300 Find the CADR from the manufacturer in units of cubic feet per minute, or cfm; if they report multiple numbers, use the one for 'dust'									
ST	EP 3 HOW MU	CH OUTDOOR AIR VENTILATION DO YOU HAVE	?										
	How is the	eventilation in my school?	Low ventilation	Good ventilation		3	ACH	This is the appr	oximate mi	nimum air exchar	nge rate that scho	ols should be d	esigned f
				Enhanced ventilation		4	ACH	Select this only if your school has made enhancements beyond code minimums					
8				Typical school		1.5	ACH	This is an approximate average air exchange rate in many schools based on rese					
				Low ventilation		1	ACH	Select this if your school has poor ventilation or you're not sure (for reference, o					
ST	EP4 COMBINI	NG AIR CLEANING AND VENTILATION, IS YOU	R ROOM MEETING THE T	ARGET?	1								
	Air change	es from outdoor air ventilation		1	1	TARGET IS AT	LEAST 5 TOTAL AIR CHAI	NGES PER HOUR	1				
	Air change	es from air cleaner		4.5	1		Ideal (6 ACH)		1				
8	Total air c	changes in the room per hour		5.5			Excellent (5-6 ACH)						
							Good (4-5 ACH)						
2					1		Bare minimum (3-4 ACH)		1				
							Low (<3 ACH)		1				
ST	EP 5 WHAT SIZ	ZE ROOM WILL WORK FOR THIS PORTABLE AI	R CLEANER?			-							
1	Cubic feet	per minute (cfm) of clean air from cleaner		300 This is from	the manufactur	er (see cell 'c10)		-					
	Cubic feet	per minute (cfm) of outdoor air from ventilation		67 This is calculated from air change			and volume of room						
10	Total cfm	of air cleaning and ventilation		367									

README - 🔒 SCHOOLS.Tool for selecting port - 🔒 SCHOOLS.Expanded tool with exam -

https://docs.google.com/spreadsheets/d/INEhkIIEdbEi_b3wa6gI_zNs8uBJjISS-86d4b7bW098/edit#gid=1836861232

Q

23 Summary

- Most buildings and their HVAC systems are not designed for infection control
- HVAC systems can reduce airborne risk by lowering exposure
- Ventilation, filtration, air cleaners are the primary controls for airborne exposure, humidity control may have secondary benefit
 - All can be effective
 - Great differences in equipment cost, energy use, operating cost
- Equivalent clean air delivery rate provides a basis for optimization
- Current recommendations for COVID-19 are similar to requirements for healthcare

24

THANK YOU!

Bill Bahnfleth

wbahnfleth@psu.edu

ashrae.org/covid19

11/24/2020